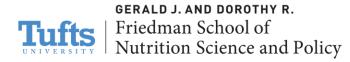


What Matters for Sustainable Diets?

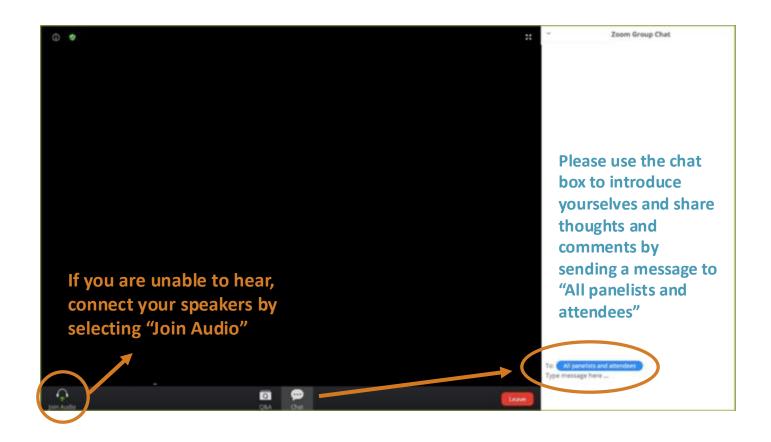
Results of a Global Expert Elicitation across Environmental, Social, Health, and Economic Domains

Katherine Fuller

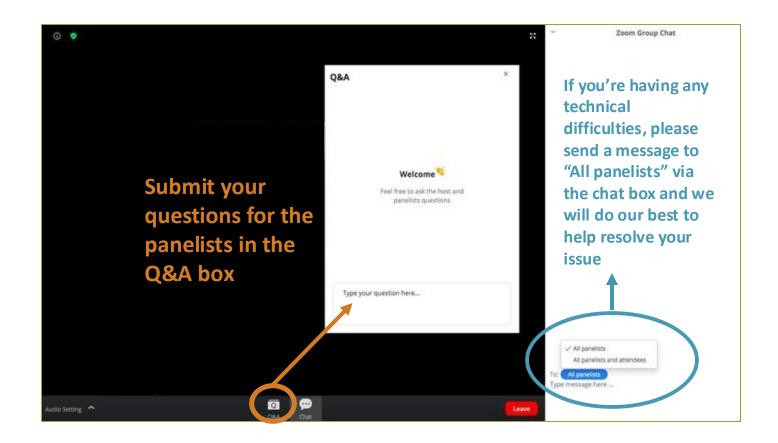

Sean B. Cash

Nicole Blackstone

Shibani Ghosh



WELCOME TO THE ZOOM WEBINAR



Q&A AND CHAT

The Food Systems for Nutrition Innovation Lab and the LASTING Project Present:

What Matters for Sustainable Diets? Results of a Global Expert Elicitation Across Environmental, Social, **Health and Economic Domains**

Moderator

SHIBANI GHOSH Director Food Systems for Nutrition Innovation Lab, **Tufts University**

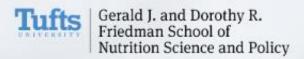
Speakers

Assistant Professor Friedman School of Nutrition Science & Policy, Tufts University

SEAN B. CASH

KATHERINE FULLER

Assistant Professor Oregon State University's College of Agricultural



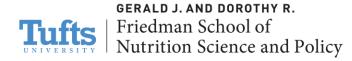
Scan Here to Register

Zoom Webinar | Thursday, Dec 5th 2024 | 11:00-12:00 PM (ET)

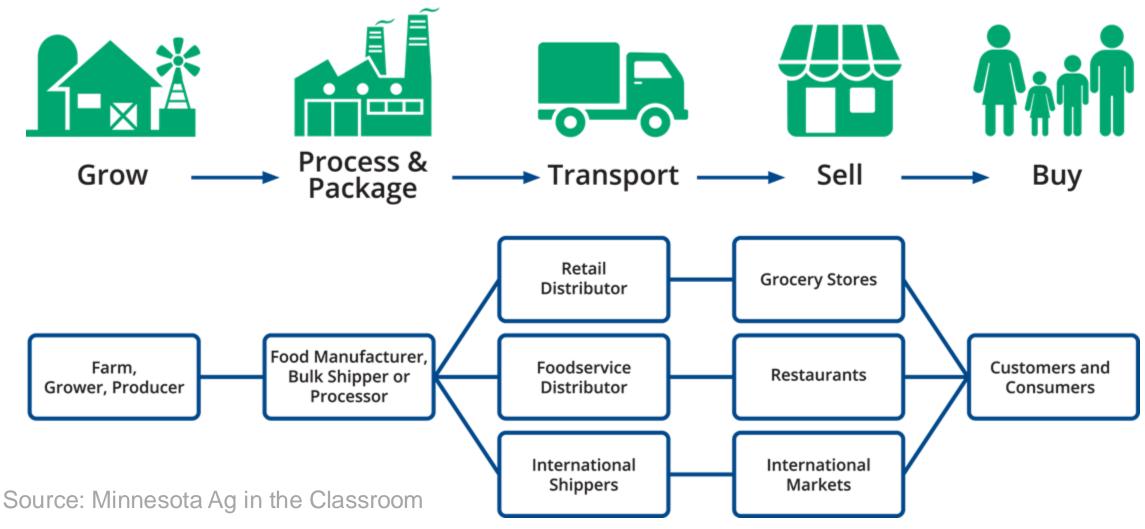
What Matters for Sustainable Diets?

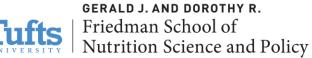
Results of a Global Expert Elicitation across Environmental, Social, Health, and Economic Domains

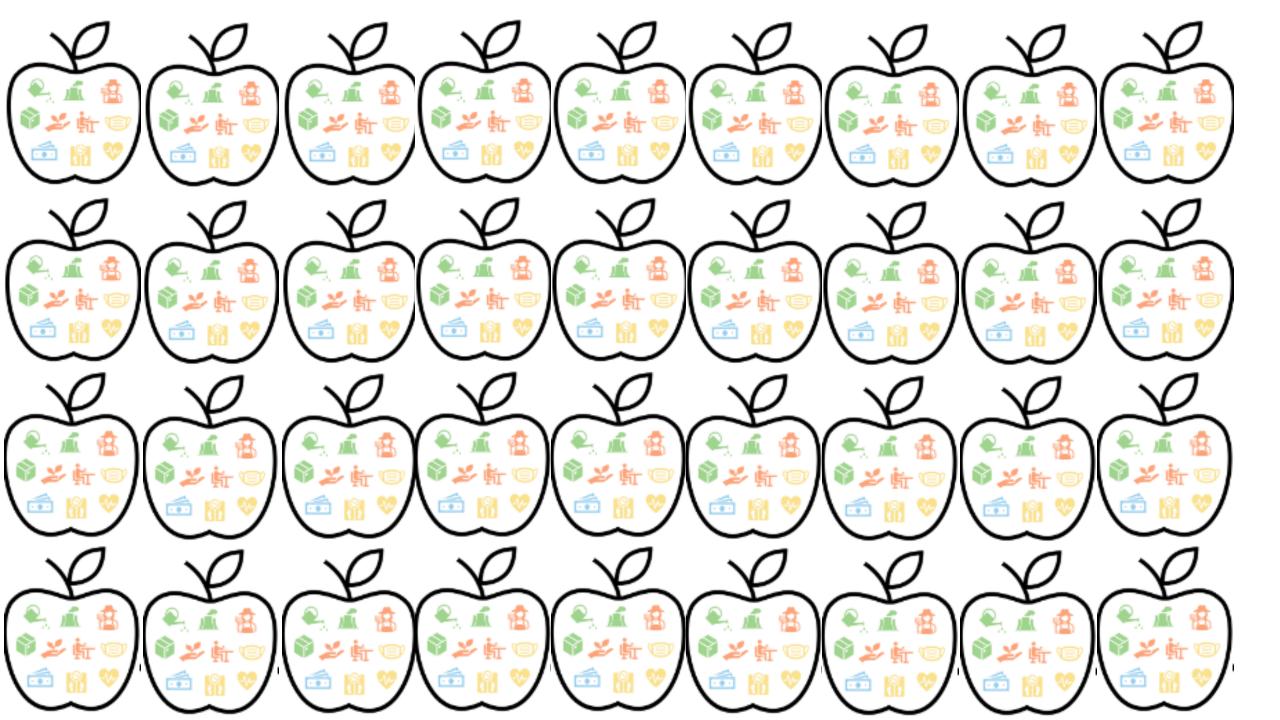
December 5, 2024


Katherine Fuller

Nicole Blackstone


Sean B. Cash





Diets account for 20% of premature disease-mediated mortality worldwide (Afshin et al. 2019)

>3 billion people suffer from 1+ manifestations of poor nutrition: undernutrition, overweight/obesity, and/or micronutrient deficiencies (FAO et al. 2020)

Current U.S. diets linked to preventable cancer, heart disease, stroke, and diabetes outcomes (Zhang et al. 2019; Micha et al. 2017)

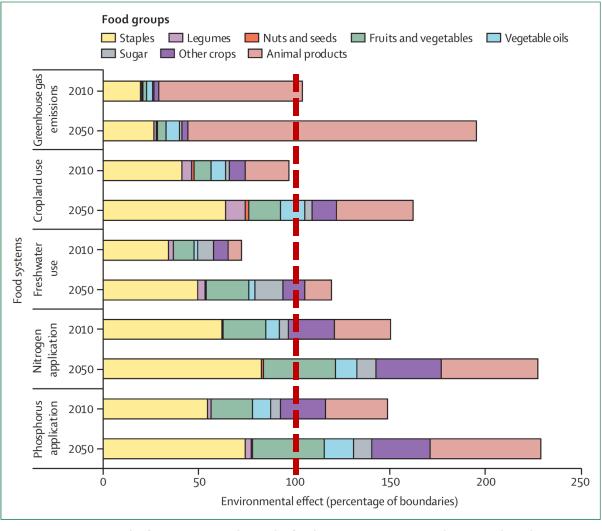
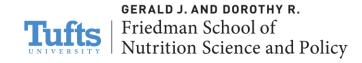
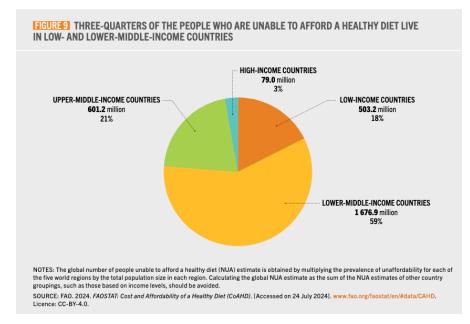



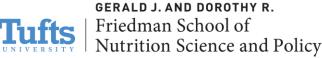
Figure 5: Environmental effects in 2010 and 2050 by food groups on various Earth systems based on business-as-usual projections for consumption and production

Source: Willet at al., 2019, The Lancet


SOCIAL AND ECONOMIC ASPECTS

1.2B people employed in food systems globally (FAO 2023)

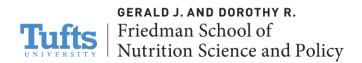
Agriculture, forestry, and fishing sector has one of the highest rates of forced labor (ILO)


High risk of forced labor in the US food system (Blackstone et al., 2023)

1/3 of global population cannot afford a healthy diet (FAO 2024)

FOOD SYSTEMS MUST TRANSFORM

Improve ecological efficiency of agriculture


Reduce food waste and loss along the value chain

Shift dietary patterns

Leading A **S**ustainability **T**ransition In **N**utrition **G**lobally

Nicole Tichenor Blackstone

Sean Cash

Patrick Webb

Fang Fang Zhang

Jessica Sparks

Brooke M. Bell

Fred Cudhea

Katherine Fuller

Shijun Gao

Becket Harney

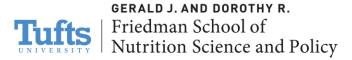
Kyra Battaglia

Edgar Rodríguez-Huerta

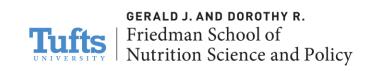
Amin Nikkhah

Zach Conrad

Bethany Jackson



Create evidence-based recommendations, methods, and metrics for integrated sustainability assessment of dietary patterns



DEFINING A SUSTAINABLE HEALTHY DIET

FAO defines "Sustainable Healthy Diets" as "dietary patterns that promote all dimensions of individuals' health and wellbeing; have low environmental pressure and impact; are accessible, affordable, safe and equitable; and are culturally acceptable"

SCOPING REVIEW

Criteria:

- Published from Jan 2015 to 31 Dec 2021.
- Must consider dietary pattern links to 2 or more pillars.
- Must be analytical rather than conceptual.

OPEN ACCESS

EDITED BY

Martin Kussmann, Bayerische Landesanstalt für Landwirtschaft (LfL), Germany

REVIEWED BY

Lilia Pedraza

National Institute of Public Health, Mexico Valentina De Cosmi, University of Milan, Italy

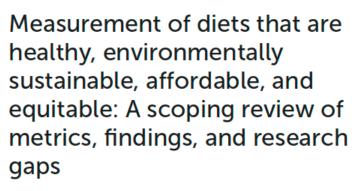
*CORRESPONDENCE

Patrick Webb

patrick.webb@tufts.edu

SPECIALTY SECTION

This article was submitted to Nutrition and Sustainable Diets, a section of the journal Frontiers in Nutrition


RECEIVED 16 December 2022 ACCEPTED 13 March 2023 PUBLISHED 03 April 2023

CITATIO

Webb P, Livingston Staffier K, Lee H, Howell B, Battaglia K, Bell BM, Matteson J, McKeown NM, Cash SB, Zhang FF, Decker Sparks JL and Blackstone NT (2023) Measurement of diets that are healthy, environmentally sustainable, affordable, and equitable: A scoping review of metrics, findings, and research gaps. Front. Nutr. 10:1125955. doi: 10.3389/fnut.2023.1125955

COPYRIGHT

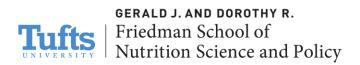
© 2023 Webb, Livingston Staffier, Lee, Howell, Battaglia, Bell, Matteson, McKeown, Cash, Zhang, Decker Sparks and Blackstone. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice.

Patrick Webb¹*, Kara Livingston Staffier², Hyomin Lee¹, Brian Howell¹, Kyra Battaglia¹, Brooke M. Bell¹, Julia Matteson¹, Nicola M. McKeown¹.³, Sean B. Cash¹, Fang Fang Zhang¹, Jessica L. Decker Sparks¹ and Nicole Tichenor Blackstone¹

¹Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States, ²Nutritional Epidemiology Program, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States, ³Department of Health Science, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States

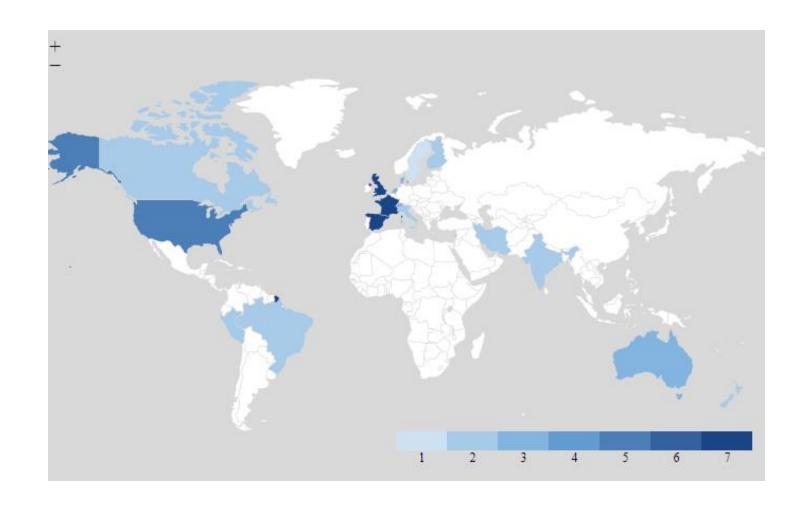
Introduction: Research on the impacts of dietary patterns on human and planetary health is a rapidly growing field. A wide range of metrics, datasets, and analytical techniques has been used to explore the role of dietary choices/constraints in driving greenhouse gas (GHG) emissions, environmental degradation, health and disease outcomes, and the affordability of food baskets. Many argue that each domain is important, but few have tackled all simultaneously in analyzing diet-outcome relationships.

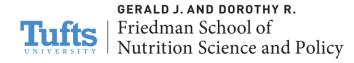
Methods: This paper reviews studies published between January 2015 and December 2021 (inclusive) that examined dietary patterns in relation to at least two of the following four thematic pillars: (i) planetary health, including, climate change, environmental quality, and natural resource impacts, (ii) human health and disease. (iii) economic outcomes. including diet cost/affordability. and (iv)



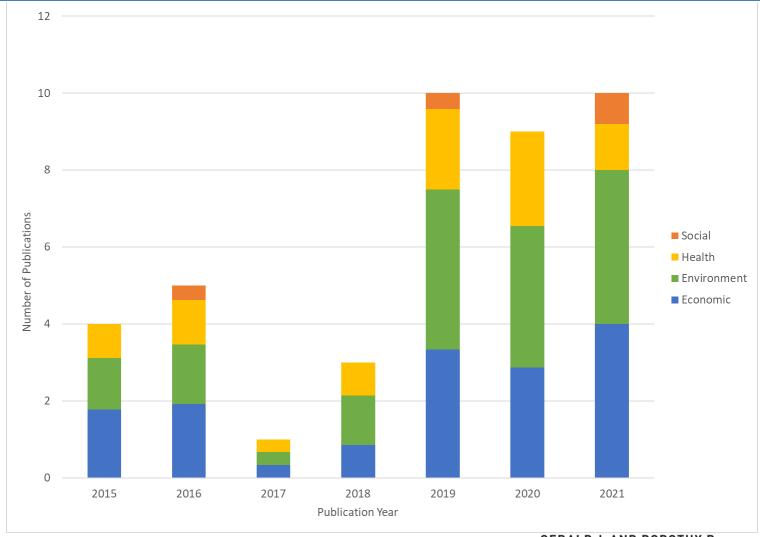
PILLAR DEFINITIONS

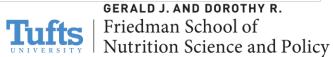
- **Health**: Outcomes related to diseases or human wellbeing that are associated with meeting nutrient needs, supporting physiological and cognitive growth and development, and promoting wellness.
- **Environment**: The impacts on climate, ecosystems, and natural resources resulting from the production, distribution, consumption, and disposal of food commodities and products that underpin dietary patterns.
- **Social**: The underlying conditions within, and the impacts of food supply chains on, stakeholders who are directly or indirectly affected by food system functions. Stakeholder groups include workers, value chain actors, local communities, society, and children. While the wellbeing of people is most focused on, the wellbeing of animals is also a concern.
- **Economic**: Outcomes related to consumers' affordability and access to desired foods, relative food prices, and the cost of policy actions, as well as the viability of the supply chains and institutions that support all food system functions.




SCOPING REVIEW RESULTS

Geographic distribution of included papers (Webb et al., 2023)

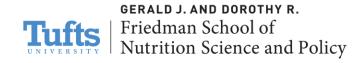



SCOPING REVIEW RESULTS

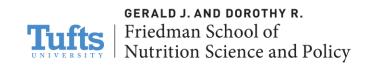
Frequency count of included pillars, by publication year (Webb et al., 2023)

SCOPING REVIEW RESULTS

Outcome measures by pillar (Webb et al., 2023)

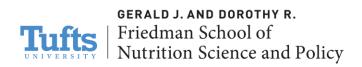


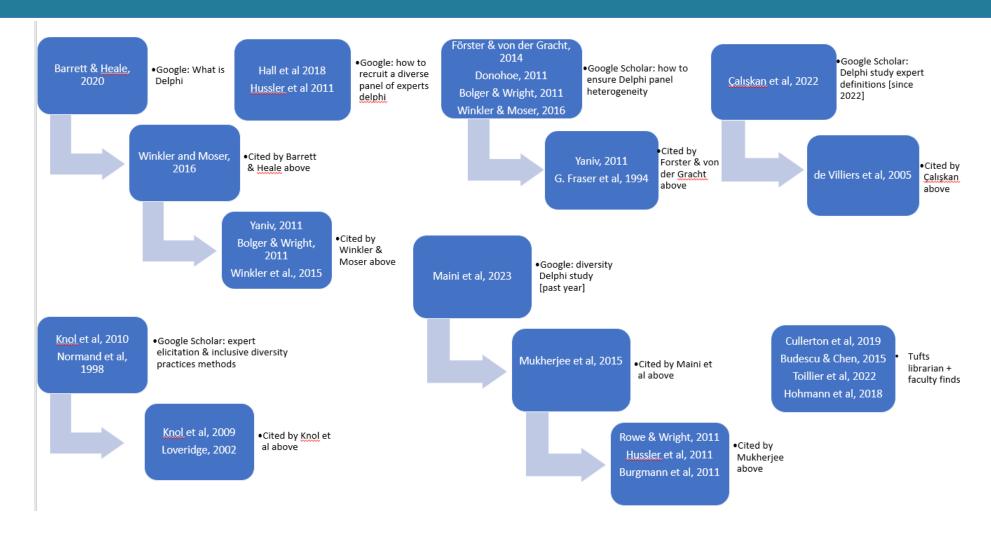
- A *growing number* of analyses integrate interactions across <u>2 pillars</u>,
 - a few tackle 3 pillars,
 - and none include all 4 pillars



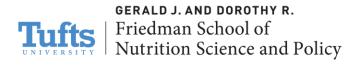
EXPERT ELICITATION: RESEARCH QUESTIONS

- What are the necessary outcomes to consider when analyzing the impact of dietary patterns from a multidimensional sustainability perspective?
- What are the perceived importance and prioritization of these outcomes among experts?




EXPERT ELICITATION: GENERAL APPROACH

- Utilize a modified Delphi approach to elicit expert opinions
- Invite authors from our previous scoping review
- Our review found lack of representation from LMICs and limited coverage of social and health pillars
- Recruit additional experts selected to increase inclusivity and representation of expertise and geographic region


SELECTION CRITERIA FOR ADDITIONAL EXPERTS

(at least one of the following, as self-identified in a screening questionnaire)

- 1. Evidence of professional productivity in terms of participation in academic or multi-lateral symposia relevant to food systems and/or sustainability (e.g., ANH, COP27)
- 2. At least five years current or previous experience in the public or governmental sector related to sustainability of dietary patterns and one of the four pillars
- 3. At least five years current or previous experience in the private sector related to sustainability of dietary patterns and one of the four pillars
- 4. At least five years teaching or extension portfolio that includes courses dedicated to sustainability of dietary patterns aligned with one of the four pillars
- 5. Evidence of indigenous knowledge as demonstrated in multi-lateral convenings, or at least five years of leadership experience with an indigenous group

DESIGN AND DATA COLLECTION

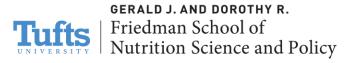
Screening & Recruiting

Stage 1

- •SRO rating exercise
- ·Proposal of EPO

Stage 2

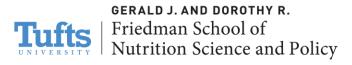
- Feedback on SRO rating
- •EPO rating exercise
- Domain weighting


Stage 3

- ·Feedback on EPO rating
- ·Final domain weighting
- ·Overall feedback

Results

EXAMPLE: RATING EXERCISE


With regard to the **health** pillar, how important are the following outcomes in a comprehensive assessment of the sustainability of dietary patterns?

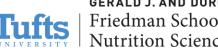
Consider on a scale from 1 as not important at all to 5 as extremely important.

	Not important at all (1)	Somewhat unimportant	Neutral	Somewhat important	Extremely important (5)	Unable to rate
Exposure to food contaminants	0	0	0	0	0	0



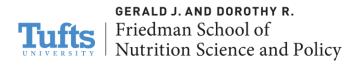
HEALTH OUTCOMES

Abdominal obesity	Arrhythmia	Coronary Artery Disease	Gall Bladder Cancer	Kidney stones (nephrolithiasis)	Osteoporosis	Stress
All cancers (total)	Arthritis	Death due to all causes	Gestational diabetes	Liver cancer	Overnutrition (malnutrition)	Stroke
All cardiovascular diseases (total) Asthma	Dental cavities	Gout	Liver Disease	Pancreas Cancer	Stunting
All cerebrovascular diseases (tota	I) Blood cancer (leukemia)	Diarrhea	Heart Failure	Lymphatic cancer	Pericardial diseases	Thyroid cancer
All neurological disorders (total)	Brain tumors	Diet quality	Heart valve diseases	Maternal nutrition	Prostate cancer	Type 2 Diabetes
All non-CVD vascular diseases (total)	Breast Cancer	Disability-adjusted life year (DALY)	Human immunodeficiency virus (HIV)	Mental health (overall)	Pulmonary Embolism	Undernourishment (hunger)
All thyroid disorders (total)	Bronchus and Lung Cancer	Endometrium Cancer	Hyperlipidemia (high cholesterol)	Metabolic syndrome	Quality of life	Undernutrition (malnutrition)
Alzheimer's disease	Cardiomyopathy (heart muscle disease)	Esophageal cancer	Hypertension (high blood pressure)	Micronutrient deficiencies (overall)	Quality-adjusted life year (QALY)	Wasting
Anemia	Case-specific mortality for chronic diseases	Exposure to food contaminants	Hypertensive Heart Disease	Mood	Reproductive disorders	Wellbeing
Antimicrobial resistance	Cervical cancer	Eye and ear disorders	Infant mortality	Myocardial infarction (heart attack)	Rheumatic Heart Disease	Years of life gained or saved
Anxiety	Chronic Kidney Disease	Food allergies	Irritable bowel syndrome	Nonalcoholic fatty liver disease	Skin cancer	Zoonotic diseases
Aortic Aneurysm	Colorectal Cancer	Food poisoning	Kidney Cancer	Obesity	Stomach Cancer	



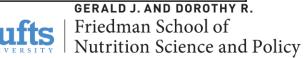
ENVIRONMENT OUTCOMES

Animal biodiversity	Exposure to ionizing radiation	Land use / occupation	Non-renewable fossil energy use	Respiratory inorganics
Aquatic ecotoxicity	Fish stock depletion	Land use driven biodiversity loss	Ozone layer depletion	Respiratory organics
Blue water / freshwater use	Frequency of extreme events	Local climate effects driven by land use change	Phosphorus footprint	Soil health
Carbon sequestration potential	Freshwater eutrophication	Marine acidification	Phosphorus use / application	Terrestrial acidification
Changes in growing season (degree-days)	Global warming potential	Marine eutrophication	Photochemical ozone effect on vegetation	Terrestrial ecotoxicity
Climate variability*	Grassland use / occupation	Marine food web alterations	Plant biodiversity	Terrestrial eutrophication
Cropland biodiversity footprint	Groundwater depletion	Microplastic pollution	Pollinator abundance	Water footprint (Blue, Green, and Grey)
Cropland use / occupation	Habitat fragmentation	Nanoplastic pollution	Presence of carcinogenic toxins	Water scarcity
Emissions of individual greenhouse gasses	Indirect land use change	Nature use / occupation	Presence of non-carcinogenic toxins	
Energy use/primary energy use	Invasive species	Nitrogen footprint	Renewable energy use	
Exposure to diet-related pesticides	Land degradation	Nitrogen use / application	Resilience	



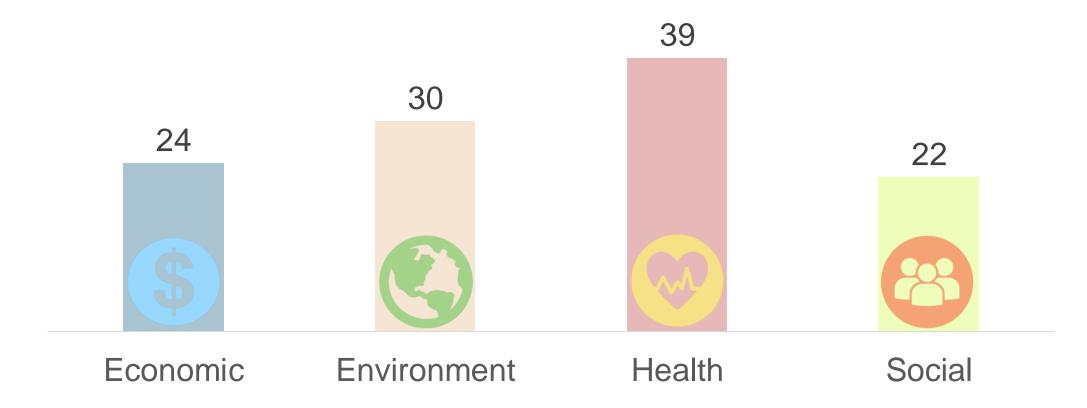
ECONOMIC OUTCOMES

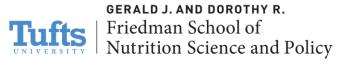
Average individual wealth (per capita GDP)	Food expenditure (total)	Nutrition specialist / nutritionists visit costs
Cost of environmental-related diseases	Food expenditure as a share of income	Policy implementation costs
Cost of food losses	Food inflation relative to overall inflation	Productivity cost
Cost of food production	Food supply chain cost	Productivity losses
Cost of Illness	Gross domestic product (GDP)	Revenue generated from a policy intervention
Cost of nutrition-related diseases	Gross value added (GVA)	Sectoral employment
Cost of preventative healthcare programs	Healthcare Cost / Savings	Total unemployment rate
Food assistance programs	Healthy diet cost	Variation in food price / cost



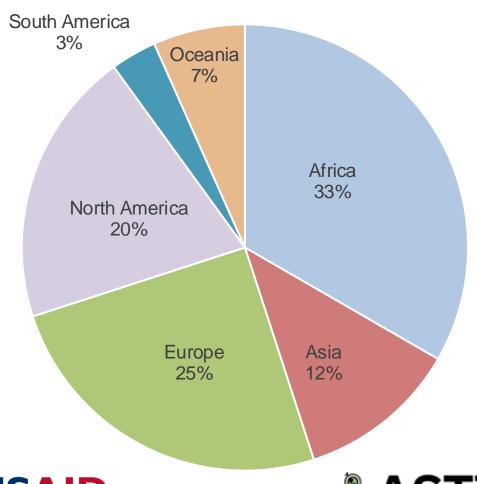
SOCIAL OUTCOMES

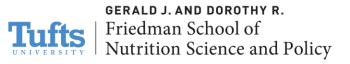
Access to immaterial resources (e.g., education, community services)*	Delocalization and migration*	Gender equality*	Safe work environment (e.g., occupational injury)*
Access to material resources (e.g., land, water, minerals, infrastructure)*	Departure from current or observed diets	Governance risks	Secure living conditions*
Adequate earnings and productive work (e.g., piece rate work, Manufacturing Wage Index)*	Desirability	Native food security*	Social dialogue and workers' and employers' representation (e.g., trade unions, collective bargaining)*
Combining work and family life (e.g., parental leave, workplace protections for pregnant people, etc.)*	Employment opportunities (e.g., unemployment rate, labour force participation rate)*	Prevention and mitigation of armed conflicts*	Social security (e.g., paid sick leave, paid vacation time, etc.)*
Community engagement*	Equal opportunity and treatment in employment (e.g., gender wage gap, discrimination by race, ethnicity, migrant status, etc.)*	Public engagement*	Stability and security of work (e.g., precarious employment rate, job tenure)*
Community risks	Ethical treatment of animals*	Respect of indigenous rights*	Transparency to consumers*
Convenience*	Food availability	Risks to human rights	Wealth distribution*
Cultural heritage*	Food security*	Risks to labor rights and decent work	Work that should be abolished (e.g., forced labour, child labor)*
Cultural relevance*	Food sovereignty*	Risks to workplace safety	
Decent hours (e.g., employment in excessive working time, paid annual leave)*	Freedom from stigma*	Safe living conditions*	CERALD LAND DODOTHY



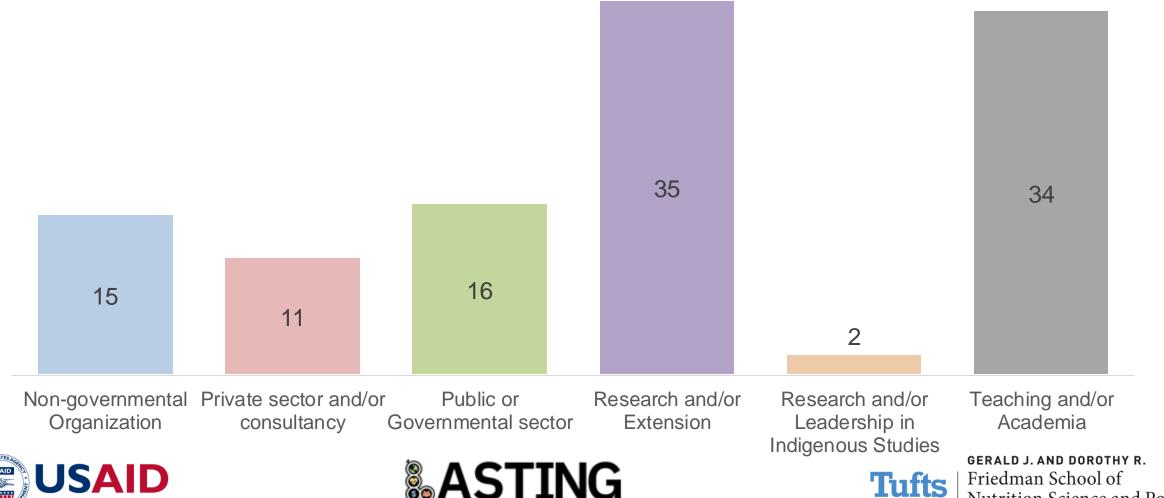


REPRESENTATION PER DOMAIN



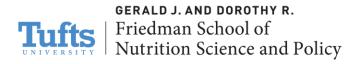

REPRESENTATION BY CONTINENT

What continental region do you most identify with personally?



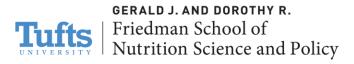
REPRESENTATION BY AREA OF WORK

Nutrition Science and Policy

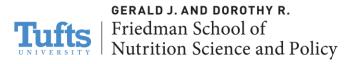


TOTAL OUTCOMES

Domain	Systematic Review Outcomes (SRO)	Expert Proposed Outcomes (EPO)	Total Outcomes SRO + EPO
Environment	31	21	52
Health	27	56	83
Economic	14	10	24
Social	8	30	38

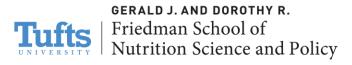


OUTCOMES RESULTS



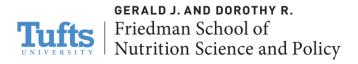
HEALTH Top Outcomes

Health Pillar	Mean	Variance	% Change	ICC
Micronutrient deficiency (overall)	4.90	0.15	+5.82%	
Undernourishment (hunger)	4.87	0.27	+3.71%	
Undernutrition (malnutrition)	4.87	0.27	+4.74%	0.88
Diet quality	4.87	0.12	+5.40%	
Maternal nutrition	4.82	0.15	+5.35%	


ENVIRONMENT

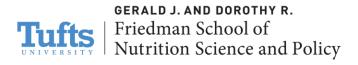
Top Outcomes

Environment Pillar	Mean	Variance	% Change	ICC
Soil health	4.86	0.12	+1.95%	
Land use-driven biodiversity loss	4.83	0.20	+2.11%	
Water scarcity	4.82	0.48	+0.60%	0.86
Resilience	4.81	0.24	+2.60%	
Cropland use / occupation	4.76	0.19	+0.83%	


ECONOMIC

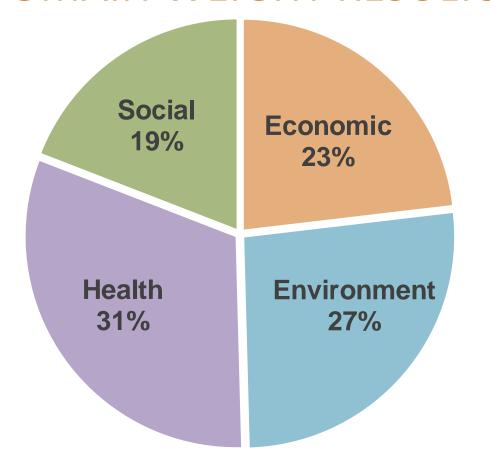
Top Outcomes

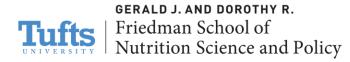
Economic Domain	Mean	Variance	% Change	ICC
Food expenditure as a share of income	4.81	0.23	+1.20%	
Healthy diet cost	4.70	0.37	+2.80%	
Healthcare cost / savings	4.59	0.25	+0.03%	0.90
Cost of food production	4.50	0.35	+2.44%	
Cost of nutrition-related diseases	4.50	0.26	+1.61%	



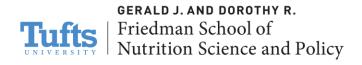
SOCIALTop Outcomes

Health Pillar	Mean	Variance	% Change	ICC
Food availability	4.92	80.0	+1.12%	
Food security	4.81	0.16	+1.04%	
Access to material resources	4.59	0.35	+1.16%	0.74
Access to immaterial resources	4.45	0.35	-1.01%	
Adequate earnings and productive work	4.45	0.35	+1.59%	



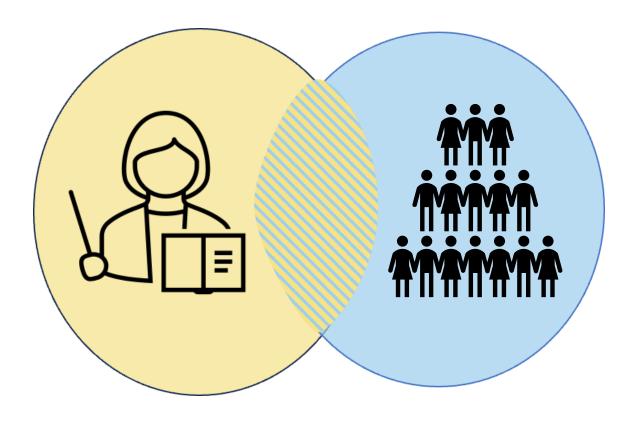


DOMAIN WEIGHT RESULTS

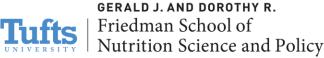


IN CONCLUSION

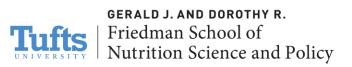
- The global representation of the panel of experts, who have varied areas of work in different domains of sustainability, is key to capturing the importance of the diverse outcomes presented and proposed.
- Sustainability challenges require nuanced approaches that reflect the relative importance of the
 different domains (environmental, social, economic, and health), so applying weights based on expert
 insights or contextual factors would provide a more accurate analysis and would help to prioritize
 actions.
- The **Delphi technique** revealed expert consensus on prioritizing environmental and health outcomes while emphasizing the importance of equity, cultural considerations (social outcomes), food prices, and the cost of healthy diets (economic outcomes).



FUTURE RESEARCH


Consumer-Facing Research

Are experts and consumers showing alignment in priorities regarding the importance of the outcomes of dietary patterns?


ACKNOWLEDGEMENTS

Expert Panel Members who Participated in all Rounds

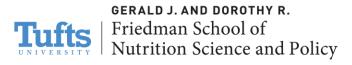
Abayineh Amare, Alexandra van den Berg, Andrés Silva, Andrew Adem, Andrew Naja-Riese, Anjali Ganpule, Aster Yalew Bekuru, Benjamin Allès, Bob E.H. van Oort, Bouali Guesmi, Brad Ridoutt, Charoula Konstantia Nikolaou, Christian Fischer, Christian Kelly Scott, Christopher S Browne, Dana Engel, Daniel Mason-D'Croz, Danielle Baird, Denise Frohmann, Derese Tamiru Desta, Haji Aman Deybasso, Eileen R. Gibney, Emiliana Wacheghu Mbelenga, Emmanuel Egbodo Boheje Odum, Eric J. Ruth, Gabriela Fretes, Getachew Arage Debebe, Greg S. Garrett, Helmy Abouleish, Innocensia John, Jolieke van der Pols, Juliet Alieto, Katherine Pittore, Keith Wiebe, Kelly Bristow, Kim Anastasiou, Majeed Adisa, Mallika Sardeshpande, Malumbo Macimu, Mansi Shah, Mathew Mbake Ireri, Michelle Tigchelaar, Mohammad Abdullah, Nick William Smith, Oleksandr Galychyn, Oluwatosin Ayobami Ogunsola, Pratap Chandra Panda, Rafaela Rodriguez, Rekia Belahsen, Sarah H. Pedersen, Sarah Tewoldeberhan, Sima Hamadeh, Sophie Ryan, Wisdom G. Dube, Wondimu Yonas Dafa, Wondu Reta Demissie, Yideg Alemu, Yuan Zhou, as well as one other expert who would prefer to remain anonymous.

ACKNOWLEDGMENTS

Co-authors:

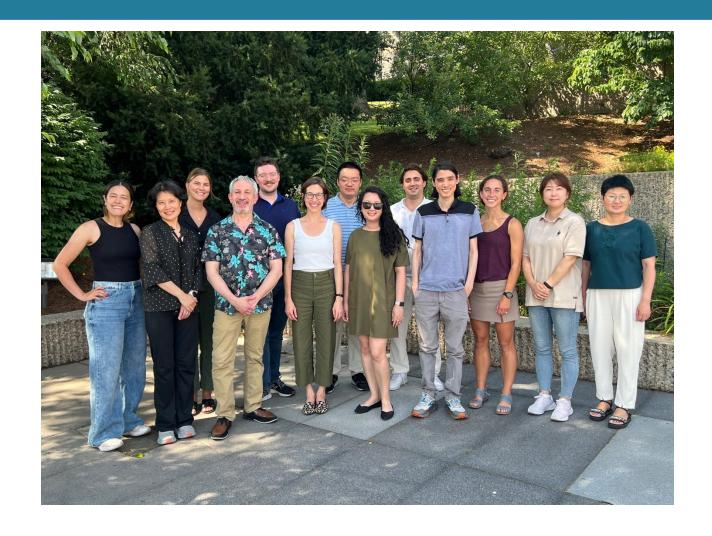
• Jennifer Ford, Shijun Gao, Julia Matteson, Sabrina Endicott, Kyra Battaglia, Brooke Bell, Jessica Decker-Sparks, Amin Nikkhah, Patrick Webb, Fang Fang Zhang

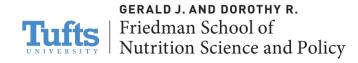
Contributors:


• Becket Harney, A. Sofia Marquez, and Hyeryeon Bae

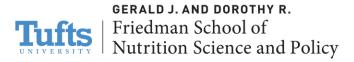
Funders:

- Primary funding for research presented today: Interdisciplinary Research Innovation Fund (RAFINS) at the Friedman School of Nutrition Science and Policy at Tufts University
- Additional support to LASTING: Danone Institute of North America's Sustainable Food Systems Initiative; Amazon Inc., LLC (unrestricted gift); Tufts University Springboard; Nottingham Research Fellowship

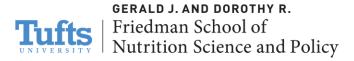



THANK YOU!

Katherine.Fuller@oregonstate.edu Nicole.Blackstone@tufts.edu Sean.Cash@tufts.edu



Q&A



FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

